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AHARONOV INVARIANTS
AND UNIVALENT FUNCTIONS

BY
REUVEN HARMELIN

ABSTRACT

Several properties of a certain series of differential operators which are
invariant under the Mdbius group (Aharonov invariants) are proved, and in
terms of this series new conditions for univalence and quasiconformal extenda-
bility of meromorphic functions are established.

1. Introduction

Let (D) denote the linear space of meromorphic functions in a simply-
connected domain D in € = C U{}. For every f € #(D) we define Aharonov
invariants {¢. (f, z)}=-: by means of the generating function

fi(z) S = _
(1.1) -1 71 2 W (f, 2) (¢ — 2) zE€D, |{-z]|<d(z,dD)

n=1

(cf. Aharonov [1]), where d(z,dD) is the Euclidean distance of z to the
boundary D of D.-Aharonov proved in [1] that this sequence has the following
remarkable properties:

) ¢, z)=f, 2} =H("/fY —3f"If'¥1(z), 2 €D and
(12) (n +1)¢,,(f,2)=¢,:-1(f,2)+:2: ll’i(.f’z)d’n—i(f’z)’ n =3’47' Tt

(i) For n =2 each . (f, z) is invariant in the sense that
1.3) U (gof,z2)=n.(f,z}) forevery Mobius transformation g.

(iii) THEOREM A. Let f € M(U) where U ={|{| < 1}. Then f is univalent in
Uiff

a9 sw{Se-v|3 (300 oa-epu

lel<1 {n=2

2}=M2(f)<oo
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and also iff

oM<

Z(ﬁ I%)(—Z)"‘*(l—lzlﬁkwk (£.0)

where both M*(f) and M~(f) are bounded by 1 for univalent f.

(1.5) sup {sup

lgj<1 \ nz=2

Here we generalize Theorem A and also refine its “only if” part for univalent
functions with quasiconformal extensions.

II. Transformation formula

The proof of Theorem A is based on the following area inequality ([1] page
603)

@) 3 (=Dl (LOF=1,

which holds for every univalent f € #(U), and on the transformation formula
([1], theorem 2)

ey weeen=3 (3 ) S  wse,

z+{
115 1{I<1.

gz)=

In this section we generalize (2.2), and deduce simple univalence criteria from it.
Let g be analytic in D. Denote

[=5@) =gz +w-g@)= 35w, zeD. jwi<daD)
and

@3) o' =gz +w)=g@) = 2 Aulg 2)w"

LemMa 1. Let g € M(D) and f € M(g(D)). Then

@4) (fo82)= 3 Bu(@ (8D +(g2), zED, nz2

where

2.5) B.i(g2)= g (z2)An-11-1(8 2)
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ProoOF. Setting f o g instead of f in (1.1) we deduce

wifog)(z) 2 ) ]
(feg)z+w)—(fe g)(z) gdjn(f g 2)w

- _wg'()f' ) _we'z)({_3 !
- e, ) (15, v o)

=§(T;VZ§VL)(%—)?(Z—)_gI(Z) Z ‘/’l (f’ g(z)) kg_l Ak,l—l(g, Z)w'“rl

k+1

=1- 2 (g z)Ww" — g'(z) 2 wh 3 A )0 (f,8(2))

il

=33 e @A 8+ g )]

=1

and since A,_10(g, z) =0for n =2, (2.4) and (2.5) follow. g.ed.

RemArk. The coefficients Ay, (g, z) defined above are closely related to the
so-called Bell polynomials appearing in Combinatorics (cf. [3], chapter 3.4).
Jabotinsky [6] and Todorov [9] studied those coefficients in connection with
Grunsky coefficients, and in [S] explicit formulas are obtained for Aharonov
invariants and Bernoulli numbers in terms of Bell polynomials.

Lemma 2. If g(z)=(az +b)/(cz +d), ad —bc =1, then
04y wifosn)=3 (1 22) (e @ UG g (), nz2
Proor. Every Mobius transformation g satisfies the identity

(2.6) g(z)—g)=(z2-{g'z}g' ¢} = m(‘c%—ﬂz)

and hence

(g(z +w)—g(2)) =g'(z)" ;[gj%ﬁ]f w

2 l)' [g (2)"1"Pw",

But g'(z)=(cz +d)?* and therefore

[g'(2)"2)" " = [(cz + d)"]" ™" = ((rll_ll))!! ((C;i);;n .
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Hence

2.7 A =(" -1 =l o \r 2

2.7) w18 2) -1 (—¢)7'g'(2) .

As g is Mobius ¢, (g, z) = 0. Thus (2.4), (2.5) and (2.7) imply (2.4'). g.e.d.

THEOREM 1. Let f € M(U). If f is univalent then
A=12P) lgn(f 2)| = paal|2])

_—_2;:(2:;)%, jz]<1, nz2.

2.8)

Proor. Let g({)=({ +z)/(1 +Z¢). Then g(0)=z and by (2.4)
U (f,2)=a(fog°8",8(0)

—-1zp 3 (1 25) 2 so80)

But since f is univalent in U, fog is also univalent there, and from (2.1) we
deduce that

1
k —

(2.10) [ (fog0)|= k=2.

]

Thus (2.9) and (2.10) yield (2.8). g.e.d.
In [4] the following improvement on (2.1) was deduced:

2.1 > DO =s]wlE (. [7])

n=2
for every f which is univalent in U and has a p-quasiconformal extension into

C\U. This implies at once:

THEOREM 1'.  If f is univalent in U and has a u-quasiconformal extension into
C\U={|¢{|z1}, then

@8) -zl a)l=plzDlpl  [2]<1, nz2.

From the Definition (2.3) of A.:(g, z) one can easily derive (cf. Jabotinsky

(6)):
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LEmMMA 3. Let gEM(D) and f € M(g(D)). Then

@.11) Acn(fogz)= ;m Aun(f, 8(2)Aui (g 2).

In particular, for m =1 we obtain the Fad-di-Bruno formula

2.11) % (fog)*(z)= ,20 Awi(g 2) ﬂf,@) (cf. [3]).

II1. Aharonov sequence and univalence

In view of Theorem A we consider, in this section, the sequence {¢. (f, z )} -2,
for every fEM(D), as one entity, namely as a (row-) vector ¥;(z) of
meromorphic functions. Then one can write the transformation formula (2.4) in
the following matrix form:

(2.4%) Wy (2) = ¥, (8(2))Qs (2) + W, (2)
where Q,(z) is the semi-infinite upper-triangular matrix
@2.5) Qs (2) = (Bri(8 2 )i

with the B,;(g, z) as defined in (2.5) for n =21=2 and B,,(g, z)=0for n <l
Thus every conformal mapping g in D defines the following operator:

Q. B(g(D)DPH (Pog)QLEB(D)

where B(D) is the vector space of all the sequences (row-vectors) ® = (¢, )z - of
meromorphic functions in D.

Now let D be a hyperbolic simply-connected domain, with the Poincaré-
metric pp (z) (normalized to have a constant curvature —4). Again in view of
Theorem A we denote by B*(D) and %B~(D) the normed subspaces of all the
sequences ® € B(D) which are bounded either in the norm

6D 1%ho= swp (3 (- DIQIOLOF) in #(D)
or in the norm
(32) |9ko = sup_ (sup1(Q30).0)) in #°(D)

where in both norms the suprema are taken over all the conformal mappings g
of the unit disc U onto D.
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The following lemma sums up some obvious facts about #*(D) and B7(D).
LemMa 4. (i) If @€ B*(D) then

(33) @] =[Pl

and therefore B*(D)C B~(D) continuously.
(i) If ®=(¢u)n-2€ B"(D), then

(3.4) |2 sup [(Q3):0)] =sup oo ()| :(0)| =]zl

and therefore the “projection”
%p(D) 3 (¢n ):=2 [ ¢2 (S %2(D) = {¢ analytic in D, ” (b "2,1) < °°}

is continuous.
(i) If h:D—D is a conformal mapping, then Q% is an isometric-
isomorphism of B* (D) onto B* (D), p =2, .

Proor. Part (i) is self-evident. (ii) follows from the identity pp () =|g'(0)|™
for every conformal mapping g: U-—>D with {=g(0). (iii) follows from
Jabotinsky multiplication formula (2.11) which has the matrix form

(2.117) Q4 (2) = Qs (g(2))Qs (2)
and also the operator form
(2.11%) Q%= Q% Q7.

Thus, since Qs = I = the unit matrix, Q-+ = (Q?%)™" for univalent h in D, and
therefore Q% is an isomorphism of B(D) onto B(D).
Finally, if ® € B=(D), then

101®ko = sup {supl(@3c Q19 0]}

= sp_{sup (01,0, 0)} =]

hog:U~D n=2

Similarly we prove that | Q%®|.0 = || ®|..5- q.ed.
Notice that by the recursion formula (1.2), ¥, belongs to the set

%A (D)= {¢)= (¢n):=2€ %(D)(n + 1)¢" = ¢':_1+i§2 ¢i¢n—i’ n =3,41 ot ’} -

THEOREM 2. Let D be a hyperbolic simply-connected domain.
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(i) If f is meromorphic univalent in D, then
¥, € BL(D)=RBY(D)N Ba(D)
and
(3.5) ¥ ko =2.

() If @€ BAD)= B (D)N Ba(D), then ® =Y, for some meromorphic
univalent f in D.
(i) A meromorphic function f is univalent in D iff ¥, € BL(D), p =2,».

Proor. If D is a disc, then ¥, =0 for any conformal mapping g of U onto
D, and fog is univalent in U whenever f is univalent in D. Then by (2.1) and
2.4*)

4 3 e-DGegOF= 3 (- DIQ¥).OF S,
ie.

(3.5) ¥ o =1.

Now, if f is univalent in a hyperbolic simply-connected domain D, and g is any
conformal mapping of U onto D, then by Lemma 4 (iii), formula (2.4*) and (3.5)

1) o =1 Q3 v =Wl + [ ¥e e =2.

(i) Conversely, if @ = (¢n )n-2 € Ba(D), then by (3.4), ¢. € B,(D). Hence, by
a well-known property of the Schwarzian derivative ¢x(z) = ¢u(f, z) =#{f, z} for
some locally univalent meromorphic function f in D. Therefore ® = (¢.).-2 =
(W (f))7-2 =¥, by the definition of B4 (D).

Now, if ® € B5(U), then for every Mdbius self-mapping g of U we have

[(Q%®) 0] =[(Q3¥)n O] = ¢n (fo 8, 0)| =[Py <, nZ=2.

But this is exactly Aharonov’s sufficient condition (1.5) for univalence of f in U.
Finally, if ® € B5(D), so that ® =¥, for some f € #(D), then by (2.4*%),
(3.3), Lemma 4 (iii) and (3.5)

1¥see oo <N Q3w + ¥ v S| @flop +1 <0

for any conformal mapping of U onto D. Hence ¥., € BL(U) so that fog is
univalent in U, and therefore f is univalent in D = g(U).
Part (iii) follows at once from parts (i) and (ii), and Lemma 4 (i). g-e.d.
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COROLLARY 1. B4(D)=BA(D)C{®e B D):||®|Lo =2}.

Proor. BL(D)C Ba(D) by Lemma 4 (i). Conversely if ® € B%(D), then
® = ¥, for a univalent f, and hence ||®|,» = 2. q.e.d.

IV. Invariant sequence and quasiconformal extension

Combining (2.1') with (2.2) one can prove the following quasiconformal
refinement of the “only if”” part of Theoremn A:

Lemma 5. If f is univalent in the unit disc U and has a p-quasiconformal
extension C\U, then

3 (D oa-terwa o) slul

@.1)[w; ||2.U = |Scl|l<e { ,2‘2(" -1

and therefore also
4.1 1 [l =2 [l

In this section we generalize (4.1').

THEOREM 3. Let D, and D, be complementary simply-connected domains in
C, and let f, and f, be two conformal mappings in D, with po and ;-
quasiconformal extensions, respectively, into D,, and denote ¥, =¥, i =0,1.
Then

4.2 Wy = Wollup, =2 || F2E2
“2) e o}

PROOF. Assume first that D, = U is the unit disc. “Join” w, with u, by the
“analytic disc™:

w(@)=2EEE i clul where p =24 E

1+ Lo’ 1= fiop

such that
(4.3) p©@=po, w()=p and [ple=]tsepm

For every Beltrami coefficient u supported in D, let f, be the unique
w-quasiconformal automorphism of € which fixes {0, 1,%}, and denote y*(z) =
¥ (f., 2), z € D,. Denote $4© =, ({; z) and ¥¥(z2) = (¥ ({; 2))n-2. From the
uniqueness theorem for Beltrami equation and (4.3) we deduce that £, (z) and
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fuw(z) differ from fo(z) and fi(z), respectively, by left composition with M6bius
transformations. Therefore, the invariance property (1.3) yields

YY(z)=Wy(z) and VY'(z)=W¥(2).

Since w(¢) is an analytic function of ¢ in the disc D ={|{|<|ln |5}, the
generating function

i) S G-y (where f652) = fuo2)

is an analytic function of { € D (see Ahlfors-Bers [2]), and therefore all the
invariants ¢, ({; z) are analytic functions of { € D for every z € U.
For every Mobius self-mapping g of U denote

a.(8;4) = (Q3(¥* —¥). (0)
=3 Bu@ O (& 80)- h(0:80),  n=2

Then a.(g; ¢) is analytic in D, a,(g;0) =0 and by Lemma 5 we have for every
nz=2

® 1
Jau (g 0)1= (3, (k ~ Dlan(g: 0OF)
=[|¥ = Wolbo =1+ pol, ¢ ED.
Applying Schwarz’ lemma we conclude that

lan (@ OI= A+ fuoDllll 121, 1EI<lul™ n=z=2

and for { =1<||n| " we deduce

la. (g; DI = Q3 ¥~ ¥o)) O = A+ oD ell,  n=z=2

for every conformal self-mapping g of U. Therefore

@42) W=Vl = sup (suplang: ) = -+ ludDlinll<2lme

Now assume C = dD; = 4D, is a quasicircle, so that any conformal mapping g
of U onto D, has a quasiconformal extension into C\ U, also denoted by g. Then

Bt = Mregetert 0 fo(D1) = foe g(€C\U)

and in U we have
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Q:(‘I’l - lIfO) = (qffr’x —Vo)— (Ve — v,) = Wheg — Wi
Hence, the isometry property of Q% and (4.2') imply
¥, = Wolle.p, = | Q5 (W1 = Wo)lo.w = [ Wog — Wi

v
4.2"
= 2| wrers -

Finally, if the common boundary C = 4D, = 4D, is not a quasicircle, we
denote for every conformal mapping g: U—D; and 0<r <1

g(z)=g(rz), Dy(r)=g(U)CD, C =aDyr) and Di(r)=C\Ds(r).

Then C, is a quasicircle, and since (Q}®). (0)=r"(Q5®). (0) we deduce from
(4.2")

r* [(Q (¥, = W) (0)] = [(Q %, (¥1— Vo). (0)]
= W1 = Wolle sy < 2|l st |-

This completes the proof by passing to a limit r — 1. q.e.d.

REMARK. Using the same technique, O. Lehto has proved in [8] an analogous
result for the Schwarzian derivative, which is now included in Theorem 3.
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