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AHARONOV INVARIANTS 
AND UNIVALENT FUNCTIONS 

BY 

REUVEN HARMELIN 

ABSTRACT 

Several properties of a certain series of differential operators which are 
invariant under the M6bius group (Aharonov invariants) are proved, and in 
terms of this series new conditions for univalence and quasiconformal extenda- 
bility of meromorphic functions are established. 

I. Introduction 

Let ~ / ( D )  denote the linear space of meromorphic functions in a simply- 

connected domain D in C = C U {~}. For every [ E ~ t (D)  we define Aharonov 

invariants {~, (f, z)}7=1 by means of the generating function 

f '(z) 1 = ~  ~b.(f,z)(~-z)"-' ,  z ~ D ,  I ~ - z l < d ( z ,  OD) 
(1.1) f ( z ) - f ( ~ )  z - l~  .=1 

(cf. Aharonov [1]), where d(z, OD) is the Euclidean distance of z to the 

boundary dD of D .Aha ronov  proved in [1] that this sequence has the following 

remarkable properties: 

(i) ~2(f, z ) = ~{f, z } = ~[(f"/f')' - �89 (z), z ~ D and 

n--2 
(1.2) (n+l)~.( f ,z)=d/ ,_l( f ,z)+ ~. $j(f,z)~b._~(f,z), n = 3 , 4 , . . . .  

i=2 

(ii) For n _-> 2 each ~, (f, z)  is invariant in the sense that 

(1.3) ~b. (g of, z) = ~,, (f, z) for every M6bius transformation g. 

(iii) THEOREM A. Let f ~ ~ ( U )  where U = {1 ~'1 < 1}. Then f is univalent in 

uiff 

(1.4) sup {,=~ ( n - l ) [ k ~ _ 2  (k  ~ ) ( - - , ) n - k  (1 _ [ ~- [2)kl~k if, ~,)[2}= M2(f) <~176 
I~1<1 
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and also iff 

I~l<l  I .  n:~2 I k = 2  

where both M2([) and M| are bounded by 1 for univalent f. 

Here we generalize Theorem A and also refine its "only if" part for univalent 
functions with quasiconformal extensions. 

II. T r a n s f o r m a t i o n  f o r m u l a  

The proof of Theorem A is based on the following area inequality ([I] page 
603) 

(2.1) ~ ( n -  1)15. ff,0)12< 1, 
n = 2  

which holds for every univalent f E M (U), and on the transformation formula 
([1], theorem 2) 

(n - 2 )  ( -  ~)~-k(1- 1,12f 
k - 2  (1 + ~rz) "+~ 

(2.2) ~0. ffog, z )=  ~,k if, g(z)), 
k = 2  

z + ~  I~1<1. 
g ( Z l = l  + ~z , 

In this section we generalize (2.2), and deduce simple univalence criteria from it. 
Let g be analytic in D. Denote 

= g ( z ) ,  to = g ( z  + w ) -  g ( z )  = ~ g'k'(z) w ~, 
k=l k !  

and 

(2.3) 

LEMMA 1. 

(2.4) 

where 

(2.5) 

z E D ,  ]wl<d(z, ,gD ) 

to t = (g(z + w ) -  g(z))' = ~ Ak., (g, Z)W k. 
k = l  

Let g E M(D) and f E ~(g(D)) .  Then 

qj. ( f  o g, z )  = ~B..,(g,z)qJt(f,g(z))+q~.(g,z), 
1=2 

z ED,  n _->2 

B,,, (g, z) = g'(z)A,_~,,_,(g, z). 



PROOF. 

(2.6) 

and hence 
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PROOf. Setting fog  instead of f in (1.1) we deduce 

w q ~ ~)'(z ) = 1 -  E  ,o og, z)w o 
(fog)(z + w ) - ( f o g ) ( z )  .=~ 

= wg'(z)f'(~) = wl~:(z ) ( 1 -  ~ 0,(f, st) t~ 
f(~ + to)- f (~)  ,=, 

wg'(z ) ~? ~+, 
g(z + w ) - g ( z )  - g ' ( z )  ,=z ~ Ot(f,g(z)) k ~-~ Ak . , (g , z )w  

= 1 -  ~ , . ( g , z ) w " - g ' ( z )  ~ w k+' ~ Ak . . (g , z ) , , ( f .g (z ) )  
n =1  k = O  1=1 

= 1 -  ,=1 ~ {s g'(z)A,,_t.,(g,z)$,(f,g(z))+d/,,(g,z)} w" 

and since A,_l.0(g, z) = 0 for n => 2, (2.4) and (2.5) follow, q.e.d. 

REMARK. The coefficients Aka (g, z) defined above are closely related to the 
so-called Bell polynomials appearing in Combinatorics (cf. [3], chapter 3.4). 
Jabotinsky [6] and Todorov [9] studied those coefficients in connection with 
Grunsky coefficients, and in [5] explicit formulas are obtained for Aharonov 
invariants and Bernoulli numbers in terms of Bell polynomials. 

LEMMA 2. If g(z) -- (az + b)/(cz + d), ad - bc = 1, then 

(2.4') r z )=~(?- -2 ) ( -c )" - 'g ' ( z ) '+"nd / , ( f , g ( z ) ) ,  n>=2. 
1=2 

Every MSbius transformation g satisfies the identity 

z - f f  
g(z ) -  g(~) = (z - C)g'(z ~g'(r = (cz + d)(c~ + d) 

(g(z + w ) - g ( z ) y  = g~(z) "2 ~, [g'(z)"2]~k) k+t 
k=o k! w 

g ' ( z )  "~ 
= ,,=,~ (n - 1)! [g'(z)'2]'"-')w"" 

But g'(z) = (cz + d) -z and therefore 

(n - 1)[ ( -  c)"-' 
[g'(z)'2] ~"-~ = [(cz + d)-'] '"-') = (1 - 1)! (cz + d)" " 
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Hence 

(2.7) A,. l(g,z)=(?--))(--c)"<g'(z)  '"+~ 

As g is M6bius qJ, (g, z ) = 0. Thus (2.4), (2.5) and (2.7) imply (2.4'). 

THEOREM 1. Let f ~ ~ (U). If f is univalent then 

(1 - I z  [2), [q~,(f,z)[<=p,_2([z l) 
(2.8) 

= 2 n ]zl<l ,  
k< k - 2  k ~ - l '  

PROOF. 

n__>2. 

Let g(~') = (s r + z)/(1 + 2~'). Then g(0) = z and by (2.4') 

r (f, z) = 6.(fogog-',g(O)) 

(2.9) 

q.e.d. 

n (1 - [z [2)-("+k)/:qJk (f o g, 0) 
k=2 k - 2  

=(l--]zr)-"~2(k--22)2"-k~k([og, O). 

Thus (2.9) and (2.10) yield (2.8). 

In [4] the following improvement on (2.1) was deduced: 

q.e.d. 

(2.r) ~ (n-1)1~ff,0)12~11~11~ (cf. [71) 
m = 2  

for every f which is univalent in U and has a/x-quasiconformal extension into 

C\  U. This implies at once: 

THEOREM 1'. lf f is univalent in U and has a I-~-quasiconformal extension into 
C\ U ={l~'l_-__ 1}, then 

(2.8') (1-1zl2)"l~.(f,z)l~p.-~(Izl)[l~ll~, I z l < l ,  n e 2 .  

From the Definition (2.3) of Ak, t (g, z) one can easily derive (cf. Jabotinsky 

[6]): 

1 
(2.10) [ Ok (f o g, O) I _----- kV~Z-~_ 1 , k_>2. 

But since f is univalent in U, fog is also univalent there, and from (2.1) we 

deduce that 
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LEMMA 3. Let g E ~ ( D )  and f E~(g(D)) .  Then 

k 

(2.11) A~,,.(fog, z )= ~ A,,,.(f,g(z))Ak.,(g,z). 
l=rn 

In particular, for m = 1 we obtain the Fad-di-Bruno formula 

1 ~ Ak,,(g,z)f")(fl(z)) (2.11') k-~ (fo g)'k'(z ) = ,=o �9 (cf. [3]). 

III. Aharonov sequence and univalence 

In view of Theorem A we consider, in this section, the sequence {~b, (f, z)}~-2, 

for every rEAl (D) ,  as one entity, namely as a (row-) vector ~ t ( z )  of 

meromorphic functions. Then one can write the transformation formula (2.4) in 

the following matrix form: 

(2.4*) V1og (z ) = ~t  (g(z ))Og (z ) + ~s (z ) 

where Os (z) is the semi-infinite upper-triangular matrix 

(2.5') O~ (z) = (S.., (g, z)):.t =2 

with the B.,t (g, z) as defined in (2.5) for n ~> l ~_ 2 and B.,z (g, z) = 0 for n < I. 

Thus every conformal mapping g in D defines the following operator: 

O* : ~ (g (D )) ~ ~P ~ (dp o g)O* e ~ ( D  ) 

where ~ (D) is the vector space of all the sequences (row-vectors) qb = (~b.):=2 of 

meromorphic functions in D. 
Now let D be a hyperbolic simply-connected domain, with the Poincar6- 

metric po (z) (normalized to have a constant curvature - 4 ) .  Again in view of 

Theorem A we denote by ~ 2 ( D )  and ~3| the normed subspaces of all the 

sequences (P E ~3(D) which are bounded either in the norm 

(3.1) 11r =g..sup o (n -1)[(O~(I~),~(0)[ 2 2 in ~2 (D)  

or in the norm 

(3.2) 
/ \ 

[[q~l[| = sup {supl(Q*q~).(0)l  ) in ~ ( D )  
g:U-...-~D k n > 2  

where in both norms the suprema are taken over all the conformal mappings g 

of the unit disc U onto D. 
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The following lemma sums up some obvious facts about ~2(D) and ~ ( D ) .  

LEMMA 4. (i) If ~ ~2(D) then 

(3.3) I1~11~ --< 11~'112 
and therefore ~2(D ) C S~  continuously. 

(ii) If ~ = (~b,)7=: E N~(D), then 

(3.4) I1r > sup IgQ*~)2(0)I = sup po(~')-21~b=(~')l-= 11r 
g : U ~ D  ~ED 

and therefore the "projection" 

~e  (D) ~ (~b,)7=2" 62 E ~2(D) = {th analytic in D, ]1 th 112,D < ~} 

is continuous. 
(iii) If h :D--->19 is a conformal mapping, then Q* is an isometric- 

isomorphism of ~dP(19) onto ~3P(D), p =2 ,~ .  

PROOF. Part (i) is self-evident. (ii) follows from the identity po (~) = I g'(O)I -~ 
for every conformal mapping g :  U--->D with ~=g(0) .  (iii) follows from 
Jabotinsky multiplication formula (2.11) which has the matrix form 

(2.11+) QI-, (z) = Qi(g(z))O~ (z) 

and also the operator form 

(2.11") O7., = Q* o 0 7 .  

Thus, since Q~, = I - - t h e  unit matrix, Q*-~ = (Q*)-~ for univalent h in D, and 
therefore Q* is an isomorphism of I~(/)) onto N(D).  

Finally, if �9 ~ ~ ( / ) ) ,  then 

�9 { ,I} llO~*[l~,o = sup supl (Q~oO~*)~(0  
g:U-'-*D n~2 

= sup / sup  I(O~o~').(0)1}=11~11-,o. 
h*g:U~D L nr~2 

Similarly we prove that II O ~'II~,D = I1~'11~,~" q.e.d. 
Notice that by the recursion formula (1.2), ~ i  belongs to the set 

11--2E ~ } 
NA (D)--  L* = (4~.):~ E ~ ( D ) : ( n  + 1)4~. = 4~.'-~ + 4~j4~,-j, n 3 , 4 , . . . .  j=2 
THEOREM 2. Let D be a hyperbolic simply-connected domain. 
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(i) If f is meromorphic univalent in D, then 

% ~ ~ ( D )  = ~ ' (D)  n ~ (D) 

and 

(3.5) I I*,  112.o =<2. 

(ii) If �9 e @~a(D) = @=(D) n @a (D), then dp = T t  for some meromorphic 

univalent f in D. 

(iii) A meromorphic function f is univalent in D iff ~ t  E @Pa(D), p = 2, ~. 

PROOF. If D is a disc, then q~ = 0 for any conformal mapping g of U onto 

D, and f o g  is univalent in U whenever f is univalent in D. Then by (2.1) and 

(2.4*) 

(1.4') 2 ( n -  1)lq&(fog, O)l z= ~ ( n -  1)l(O*Wt). (O)l' ~ 1, 
n = 2  n = 2  

i . e .  

(3.53 liar I1..o ~ 1 

Now, if [ is univalent in a hyperbolic simply-connected domain D, and g is any 

conformal mapping of U onto D, then by Lemma 4 (iii), formula (2.4*) and (3.5') 

* ' k i t  ~___ < II*, I1,.o = 11Qs r II2.u < II*t.. II2.u + II % I1,.~ = 2. 

(ii) Conversely, if �9 = (4~,)7=2 ~ @~_(D), then by (3.4), ~b2 E @2(D). Hence, by 
a well-known property of the Schwarzian derivative O2(z)= ~2(/, z)=-~{/, z} for 
some locally univalent meromorphic function f in D. Therefore �9 = (4).)7=2 = 

(~0. (/))~=, = ~r by the definition of ~A (D). 
Now, if �9 E ~7~(U), then for every M6bius self-mapping g of U we have 

I ( O ~ ) . ( 0 ) l  =l(O~Xt, r),(0)l = l , , f f o g ,  O)l=<llolku < ~ ,  n =>2. 

But this is exactly Aharonov's sufficient condition (1.5) for univalence of f in U. 

Finally, if qbE ~ ( D ) ,  so that ~ =  ~t  for some f ~ ( D ) ,  then by (2.4"), 

(3.3), Lemma 4 (iii) and (3.5') 

< * II%.~ Ilo.~ = II o , * ,  II-.o + I1% II,.~ =< II~'l{=.o + 1 < 

for any conformal mapping of U onto D. Hence xIttog E ~ , ( U )  so that f o g  is 

univalent in U, and therefore f is univalent in D = g(U). 
Part (iii) follows at once from parts (i) and (ii), and Lemma 4 (i). q.e.d. 
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COROLLARY 1. ~Z(D)  = ~ , ( D )  C {~ E ~ ( D ) :  II~ll:,,, --< 2}. 

PROOf. ~ ( D ) C _  ~ ( D )  by Lemma 4 (i). Conversely if ~ E  ~7~(D), then 
= % for a univalent f, and hence II'~ll:,o =< 2. q.e.d. 

IV. Invariant sequence and quasiconformal extension 

Combining (2.1') with (2.2) one can prove the following quasiconformal 
refinement of the "only if" part of Theorem A: 

LEMMA 5. I[ [ is univalent in the unit disc U and has a/t-quasicon[ormal 
extension C\ U, then 

(4.1)H~t ll2.u = sup{ ,~  ( n -  1) I 2 (~r ( -  ~)"-k(1- 1~'12)kqsk (/, ~r) [2},~ =<]l/t H| 
I~'1<1 k =2 

and there[ore also 

(4.1') II'I', I1o. ~ II/t I1o. 

In this section we generalize (4.1'). 

THEOREM 3. Let D~ and Dz be complementary simply-connected domains in 
C, and let [o and [1 be two con[ormal mappings in D2 with /to and /t~- 
quasicon[ormal extensions, respectively, into DI, and denote ~ = ~t,, i = O, 1. 

' 1 -/20/tl ~" 

Assume first that D2 = U is the unit disc. "Join"/to with/t l  by the 

T h e n  

(4.2) 

PROOF. 

"analytic disc": 

~/~ +/Zo 
/x (~') = 1 + ~rt2o/t ' 

such that 

(4.3) 

= ~x- /~o  
where/ t  1 -/2O/tl 

/t(0)=/to, / t (1)=/ t ,  and II~ll~=ll/t,,.m, ll~. 
For every Beltrami coefficient /t supported in D1, let [~, be the unique 

/t-quasiconformal automorphism of C which fixes {0, 1, oo}, and denote q,,~(z)= 
qt, (f~,, z), z ~ D2. Denote qs. ~t~) = ~0, (~'; z) and ~r = (~b, (~'; z))7.2. From the 
uniqueness theorem for Beltrami equation and (4.3) we deduce that [~,to)(Z) and 
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f~,l)(Z) differ from fo(z) and fl(z), respectively, by left composition with M6bius 
transformations. Therefore, the invariance property (1.3) yields 

*~ and * l ( z ) = ~ l ( z ) .  

Since /x(5) is  an analytic function of 5 in the disc D ={151<11~11~1}, the 
generating function 

/ : (5 ;z)  1 
- ~ ~ . ( 5 ; z ) ( w - z )  n-' (wheref(5;z)=f~:,~(z)) 

f ( 5 ; z ) - f ( 5 ; w )  z - w  n=l 

is an analytic function of 5 E D (see Ahlfors-Bers [2]), and therefore all the 
invariants ~b, (5; z) are analytic functions of : E D for every z : U. 

For every MSbius self-mapping g of U denote 

a. (g; 5) = (O ~ (* '  - .o)) .  (0) 

= ~ B~,t(g,O)[~t(5;g(O))- ~t (0; g(0))], n _->2. 
1~2 

Then a~ (g; 5) is analytic in D, a. (g; 0) = 0 and by Lemma 5 we have for every 

n=>2 

=< I1-~-*olk~ _-< 1+ I1~ollo, 5ED. 

Applying Schwarz' lemma we conclude that 

I a. (g, 5)1 ~- (1+ II~ol[)[[~ II 15 l, 151 < II~ I[-', n_->2 

and for 5 = 1 < II/~ II -~ we deduce 

la , (g;1)l=1(O:(*,- ' I 'o))o(o)t=<(l+t l~ol l) l l~t l ,  ,~_->2 

for every conformal self-mapping g of U. Therefore 

(4.2') I1"1-*011~ =sup  (suf [a.(g;  5)1) =<(1 § 11<211~f,.fa, ll. 

Now assume C = 0D~ = dD2 is a quasicircle, so that any conformal mapping g 
of U onto D2 has a quasiconformal extension into (~ \ U, also denoted by g. Then 

ftf,.f~,=/~h.s.(fo-,)-' in fo(D~) =foog((~\ U) 

and in U we have 
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O . ( , t , ,  - , I .  o ) = ( , I ,  : . . ,  - ~ , ) - ( , t ,  :o., - % ) = , I ,  : , . ,  - ~ :o~ . 

Hence, the isometry property of Q* and (4.2') imply 

II'I', - ~'o11~ ~ --II o :  (.i., - 'I 'o)l lo.  = II,I',,~ - .i.,o~ I1~. 
(4.2") 

=< 2 II ~,~ I1o. 

Finally, if the common boundary C = OD1 = OD2 is not a quasicircle, we 

denote for every conformal mapping g : U---> D2 and 0 < r < 1 

g,(z)=g(rz), D2(r)=g,(U)CD2, C , = 0 D 2 ( r )  and D~(r)=(~\D2(r). 

Then C, is a quasicircle, and since (Q*5I)). (0)= r"(Q*cD), (0) we deduce from 

(4.2") 

r" I (O:  ('Is, - %)) .  (0) 1 = I(O ;,(,t,, - 't'o)). (o) l 

= I1~',- ,I'ollo ~ , . ,  < 2 II ~:,~ I1~. 

This completes the proof by passing to a limit r ~ 1. q.e.d. 

REMARK. Using the same technique, O. Lehto has proved in [8] an analogous 

result for the Schwarzian derivative, which is now included in Theorem 3. 
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